Energy management systems for buildings

Building automation (BAS), also known as building management system (BMS) or building energy management system (BEMS), is the automatic centralized control of a building's HVAC (heating, ventilation and air conditioning), electrical, lighting, shading, access control, security systems, and other int
Contact online >>

Building automation (BAS), also known as building management system (BMS) or building energy management system (BEMS), is the automatic centralized control of a building''s HVAC (heating, ventilation and air conditioning), electrical, lighting, shading, access control, security systems, and other interrelated systems. Some objectives of building automation are improved occupant comfort, efficient operation of building systems, reduction in energy consumption, reduced operating and maintaining costs and increased security.

BAS functionality may keep a buildings climate within a specified range, provide light to rooms based on occupancy, monitor performance and device failures, and provide malfunction alarms to building maintenance staff. A BAS works to reduce building energy and maintenance costs compared to a non-controlled building. Most commercial, institutional, and industrial buildings built after 2000 include a BAS, whilst older buildings may be retrofitted with a new BAS.

A building controlled by a BAS is often referred to as an intelligent building,[1] a "smart building", or (if a residence) a "smart home". Commercial and industrial buildings have historically relied on robust proven protocols (like BACnet) while proprietary protocols (like X-10) were used in homes.

With the advent of wireless sensor networks and the Internet of Things, an increasing number of smart buildings are resorting to using low-power wireless communication technologies such as Zigbee, Bluetooth Low Energy and LoRa to interconnect the local sensors, actuators and processing devices. [2]

Almost all multi-story green buildings are designed to accommodate a BAS for the energy, air and water conservation characteristics. Electrical device demand response is a typical function of a BAS, as is the more sophisticated ventilation and humidity monitoring required of "tight" insulated buildings. Most green buildings also use as many low-power DC devices as possible. Even a passivhaus design intended to consume no net energy whatsoever will typically require a BAS to manage heat capture, shading and venting, and scheduling device use.

Building management systems are most commonly implemented in large projects with extensive mechanical, HVAC, and electrical systems. Systems linked to a BMS typically represent 40% of a building''s energy usage; if lighting is included, this number approaches to 70%. BMS systems are a critical component to managing energy demand. Improperly configured BMS systems are believed to account for 20% of building energy usage, or approximately 8% of total energy usage in the United States.[3][4]

Building management systems have also included disaster-response mechanisms (such as base isolation) to save structures from earthquakes. In more recent times, companies and governments have been working to find similar solutions for flood zones and coastal areas at-risk to rising sea levels. Self-adjusting floating environment draws from existing technologies used to float concrete bridges and runways such as Washington''s SR 520 and Japan''s Mega-Float.[5]

Analog inputs are used to read a variable measurement. Examples are temperature, humidity and pressure sensors which could be thermistor, 4–20 mA, 0–10 volt or platinum resistance thermometer (resistance temperature detector), or wireless sensors.

A digital input indicates a device is on or off. Some examples of digital inputs would be a door contact switch, a current switch, an air flow switch, or a voltage-free relay contact (dry contact). Digital inputs could also be pulse inputs counting the pulses over a period of time. An example is a turbine flow meter transmitting flow data as a frequency of pulses to an input.

Nonintrusive load monitoring[6] is software relying on digital sensors and algorithms to discover appliance or other loads from electrical or magnetic characteristics of the circuit. It is however detecting the event by an analog means. These are extremely cost-effective in operation and useful not only for identification but to detect start-up transients, line or equipment faults, etc.[7][8]

Analog outputs control the speed or position of a device, such as a variable frequency drive, an I-P (current to pneumatics) transducer, or a valve or damper actuator. An example is a hot water valve opening up 25% to maintain a setpoint. Another example is a variable frequency drive ramping up a motor slowly to avoid a hard start.

Digital outputs are used to open and close relays and switches as well as drive a load upon command. An example would be to turn on the parking lot lights when a photocell indicates it is dark outside. Another example would be to open a valve by allowing 24VDC/AC to pass through the output powering the valve. Analog outputs could also be pulse type outputs emitting a frequency of pulses over a given period of time. An example is an energy meter calculating kWh and emitting a frequency of pulses accordingly.

Controllers are essentially small, purpose-built computers with input and output capabilities. These controllers come in a range of sizes and capabilities to control devices commonly found in buildings, and to control sub-networks of controllers.

Inputs allow a controller to read temperature, humidity, pressure, current flow, air flow, and other essential factors. The outputs allow the controller to send command and control signals to slave devices, and to other parts of the system. Inputs and outputs can be either digital or analog. Digital outputs are also sometimes called discrete depending on manufacturer.

Controllers used for building automation can be grouped in three categories: programmable logic controllers (PLCs), system/network controllers, and terminal unit controllers. However an additional device can also exist in order to integrate third-party systems (e.g. a stand-alone AC system) into a central building automation system.

Terminal unit controllers usually are suited for control of lighting and/or simpler devices such as a package rooftop unit, heat pump, VAV box, fan coil, etc. The installer typically selects one of the available pre-programmed personalities best suited to the device to be controlled, and does not have to create new control logic.

Occupancy is usually based on time of day schedules. In Occupancy mode, the BAS aims to provides a comfortable climate and adequate lighting, often with zone-based control so that users on one side of a building have a different thermostat (or a different system, or sub system) than users on the opposite side.

If enabled, morning warmup (MWU) mode occurs prior to occupancy. During Morning Warmup the BAS tries to bring the building to setpoint just in time for Occupancy. The BAS often factors in outdoor conditions and historical experience to optimize MWU. This is also referred to as optimized start.

Some buildings rely on occupancy sensors to activate lighting or climate conditioning. Given the potential for long lead times before a space becomes sufficiently cool or warm, climate conditioning is not often initiated directly by an occupancy sensor.

Lighting can be turned on, off, or dimmed with a building automation or lighting control system based on time of day, or on occupancy sensor, photosensors and timers.[9] One typical example is to turn the lights in a space on for a half-hour since the last motion was sensed. A photocell placed outside a building can sense darkness, and the time of day, and modulate lights in outer offices and the parking lot.

Lighting is also a good candidate for demand response, with many control systems providing the ability to dim (or turn off) lights to take advantage of DR incentives and savings.

In newer buildings, the lighting control can be based on the field bus Digital Addressable Lighting Interface (DALI). Lamps with DALI ballasts are fully dimmable. DALI can also detect lamp and ballast failures on DALI luminaires and signals failures.

Dynamic shading devices allow the control of daylight and solar energy to enter into built environment in relation to outdoor conditions, daylighting demands and solar positions.[12] The common products include venetian blinds, roller shades, louvers, and shutters.[13] They are mostly installed on the interior side of the glazing system because of the low maintenance cost, but also can be used on the exterior or a combination of both.[14]

Most air handlers mix return and outside air so less temperature/humidity conditioning is needed. This can save money by using less chilled or heated water (not all AHUs use chilled or hot water circuits). Some external air is needed to keep the building''s air healthy. To optimize energy efficiency while maintaining healthy indoor air quality (IAQ), demand control (or controlled) ventilation (DCV) adjusts the amount of outside air based on measured levels of occupancy.

Analog or digital temperature sensors may be placed in the space or room, the return and supply air ducts, and sometimes the external air. Actuators are placed on the hot and chilled water valves, the outside air and return air dampers. The supply fan (and return if applicable) is started and stopped based on either time of day, temperatures, building pressures or a combination.

All modern building automation systems have alarm capabilities. It does little good to detect a potentially hazardous[15] or costly situation if no one who can solve the problem is notified. Notification can be through a computer (email or text message), pager, cellular phone voice call, audible alarm, or all of these. For insurance and liability purposes all systems keep logs of who was notified, when and how.

About Energy management systems for buildings

About Energy management systems for buildings

As the photovoltaic (PV) industry continues to evolve, advancements in Energy management systems for buildings have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.

When you're looking for the latest and most efficient Energy management systems for buildings for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.

By interacting with our online customer service, you'll gain a deep understanding of the various Energy management systems for buildings featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.

Related Contents

Contact Integrated Localized Bess Provider

Enter your inquiry details, We will reply you in 24 hours.