Green energy sustainable solutions

Wind turbines and solar panels are an increasingly common sight. But why? What are the benefits of renewable energies—and how do they improve our health, environment, and economy?
Contact online >>

Wind turbines and solar panels are an increasingly common sight. But why? What are the benefits of renewable energies—and how do they improve our health, environment, and economy?

This page explores the many positive impacts of clean energy, including the benefits of wind, solar, geothermal, hydroelectric, and biomass. For more information on their negative impacts—including effective solutions to avoid, minimize, or mitigate—see our page onThe Environmental Impacts of Renewable Energy Technologies.

Human activity is overloading our atmosphere with carbon dioxide and otherglobal warming emissions. These gases act like a blanket, trapping heat. The result is a web ofsignificant and harmful impacts, from stronger, more frequent storms, to drought, sea level rise, and extinction.

In the United States, about 29 percent of global warming emissions come from our electricity sector. Most of those emissions come from fossil fuels like coal and natural gas [1,2].

Carbon dioxide (CO2) is the most prevalent greenhouse gas, but other air pollutants—such as methane—also cause global warming. Different energy sources produce different amounts of these pollutants. To make comparisons easier, we use a carbon dioxide equivalent, or CO2e—the amount of carbon dioxide required to produce an equivalent amount of warming.

In contrast, most renewable energy sources produce little to no global warming emissions. Even when including "life cycle" emissions of clean energy (ie, the emissions from each stage of a technology''s life—manufacturing, installation, operation, decommissioning), the global warming emissions associated with renewable energy are minimal [3].

The comparison becomes clear when you look at the numbers. Burning natural gas for electricity releases between 0.6 and 2 pounds of carbon dioxide equivalent per kilowatt-hour (CO2E/kWh); coal emits between 1.4 and 3.6 pounds of CO2E/kWh.Wind, on the other hand,is responsible for only 0.02 to 0.04 pounds of CO2E/kWh on a life-cycle basis;solar0.07 to 0.2;geothermal0.1 to 0.2; andhydroelectricbetween 0.1 and 0.5.

Renewable electricity generation frombiomasscan have a wide range of global warming emissions depending on the resource and whether or not it is sustainably sourced and harvested.

For example, a 2009 UCS analysis found that a 25 percent by 2025 national renewable electricity standard would lower power plant CO2 emissions 277 million metric tons annually by 2025—the equivalent of the annual output from 70 typical (600 MW) new coal plants [4].

In addition, a ground-breaking study by the US Department of Energy''s National Renewable Energy Laboratory (NREL) explored the feasibility of generating 80 percent of the country''s electricity from renewable sources by 2050. They found that renewable energy could help reduce the electricity sector''s emissions by approximately 81 percent [5].

The air and water pollution emitted by coal and natural gas plants is linked with breathing problems, neurological damage, heart attacks, cancer, premature death, and a host of other serious problems. The pollution affects everyone: one Harvard University study estimated the life cycle costs and public health effects of coal to be an estimated $74.6 billion every year. That''s equivalent to 4.36 cents per kilowatt-hour of electricity produced—about one-third of the average electricity rate for a typical US home [6].

Most of these negative health impacts come from air and water pollution that clean energy technologies simply don''t produce. Wind, solar, and hydroelectric systems generate electricity with no associated air pollution emissions. Geothermal and biomass systems emit some air pollutants, though total air emissions are generally much lower than those of coal- and natural gas-fired power plants.

In addition, wind and solar energy require essentially no water to operate and thus do not pollute water resources or strain supplies by competing with agriculture, drinking water, or other important water needs. In contrast, fossil fuels can have asignificant impact on water resources: both coal mining and natural gas drilling can pollute sources of drinking water, and all thermal power plants, including those powered by coal, gas, and oil, withdraw and consume water for cooling.

Biomass and geothermal power plants, like coal- and natural gas-fired power plants, may require water for cooling. Hydroelectric power plants can disrupt river ecosystems both upstream and downstream from the dam. However, NREL''s 80-percent-by-2050 renewable energy study, which included biomass and geothermal, found that total water consumption and withdrawal would decrease significantly in a future with high renewables [7].

Strong winds, sunny skies, abundant plant matter, heat from the earth, and fast-moving water can each provide a vast and constantly replenished supply of energy. A relatively small fraction of US electricity currently comes from these sources, but that could change: studies have repeatedly shown that renewable energy can provide a significant share of future electricity needs, even after accounting for potential constraints [9].

In fact, a major government-sponsored study found that clean energy could contribute somewhere between three and 80 times its 2013 levels, depending on assumptions [8]. And the previously mentioned NREL study found that renewable energy could comfortably provide up to 80 percent of US electricity by 2050.

Compared with fossil fuel technologies, which are typically mechanized and capital intensive, the renewable energy industry is more labor intensive. Solar panels need humans to install them; wind farms need technicians for maintenance.

Renewable energy already supports thousands of jobs in the United States. In 2016, the wind energy industry directly employed over 100,000 full-time-equivalent employees in a variety of capacities, including manufacturing, project development, construction and turbine installation, operations and maintenance, transportation and logistics, and financial, legal, and consulting services [10]. More than 500 factories in the United States manufacture parts for wind turbines, and wind power project installations in 2016 alone represented $13.0 billion in investments [11].

About Green energy sustainable solutions

About Green energy sustainable solutions

As the photovoltaic (PV) industry continues to evolve, advancements in Green energy sustainable solutions have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.

When you're looking for the latest and most efficient Green energy sustainable solutions for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.

By interacting with our online customer service, you'll gain a deep understanding of the various Green energy sustainable solutions featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.

Related Contents

Contact Integrated Localized Bess Provider

Enter your inquiry details, We will reply you in 24 hours.