Electric grid nicaragua

On a dirt road high in Nicaragua's northern mountains, a small knot of men and two precocious young boys uncoil electrical cable from the back of a pickup truck. Other workers swing machetes at overhanging tree branches. Along the cleared shoulder of the road, another crew tightens a cable on a fre
Contact online >>

On a dirt road high in Nicaragua''s northern mountains, a small knot of men and two precocious young boys uncoil electrical cable from the back of a pickup truck. Other workers swing machetes at overhanging tree branches. Along the cleared shoulder of the road, another crew tightens a cable on a freshly planted utility pole.

Verdant coffee plantations line the steep road, punctuated by wooden shacks where pigs orbit stakes in the mud. Placards on outhouses proclaim the names of aid organizations. Cinder-block evangelical churches mark even the tiniest clusters of homes.

This extension of the power grid will serve about 30 families in the San Ramón valley, about 200 kilometers northeast of Managua. "We''ve always lived in the dark here," says Salvador Gonzáles, a resident of the valley and one of the men volunteering on the line crew. For him, the arrival of electricity means a refrigerator and a leap in quality of life. "I''ll have my soda cold, some chicken, some meat, a Popsicle," he says.

Rural electrification swept through the Western Hemisphere decades ago, but Nicaragua missed out: Electricity reaches barely a third of rural Nicaraguans like Gonzáles. The country''s overall electrification rate of around 74 percent puts it ahead of Haiti and behind every other country in the hemisphere.

There is no physical reason for this impoverishment. Nicaragua is wet, windy, mountainous, volcanic, and tropical, meaning it is an excellent candidate for hydroelectric, wind, geothermal, and solar power. Estimates of its geothermal potential alone have put the figure at several thousand megawatts [PDF]; for reference, the country''s entire installed capacity is about 1,410 megawatts.

In recent years, investments in renewable energy projects have soared, thanks to generous tax breaks. But imported oil still accounts for half of the country''s electricity generation.

It''s hard to picture now, but 30 years ago Nicaragua was an international hotbed of revolution and a Cold War proxy battleground between the United States and the Soviet Union. Many Nicaraguans sympathized with the socialist Sandinista National Liberation Front, which came to power in 1979 after toppling the U.S.-backed Somoza family. These tropical northern highlands saw some of the heaviest fighting between U.S.-backed contra guerrillas and Nicaraguan forces. Over the course of the decadelong war, tens of thousands of Nicaraguans died.

At the edge of the regional capital of Matagalpa, a road leads to the modest administrative office of the Association of Rural Development Workers—Benjamin Linder (known by its Spanish acronym, ATDER-BL). Benjamin Linder was a young American engineer who sympathized with the Sandinista movement and came to Nicaragua in 1983 to work on engineering projects. The first project he completed was a 100-kilowatt hydroelectric plant near El Cuá.

Hardworking, idealistic, and playful, Linder entertained the locals by riding his unicycle through town while juggling, sometimes dressed as a clown. At the time, El Cuá was a town of 2,000 that lacked electricity, running water, and sanitation. Despite the logistical challenges of operating in a war zone—contra guerrillas mined the road to El Cuá and sprang frequent ambushes—Linder supervised the completion of the El Cuá plant in 1985 and soon began work on another.

Then, on 28 April 1987, contra soldiers attacked and killed Linder and two Nicaraguans named Sergio Hernández and Pablo Rosales as they worked at the site of the new plant near the town of San José de Bocay. Linder, the only American civilian to be killed by the contras, was 27 years old. In 1988, the IEEE Society on Social Implications of Technology posthumously awarded Linder the Carl Barus Award for Outstanding Service in the Public Interest, in recognition of his "courageous and altruistic efforts to create human good by applying his technical abilities."

Other hands took up Linder''s work. Shortly after he died, his family and friends began raising funds to complete the plant, and Bocay residents volunteered their labor. A colleague of Linder''s named Rebecca Leaf was working at the time for the Nicaraguan Energy Institute in Managua. The MIT-educated engineer gave up her government job to lead the design and construction of the Bocay plant.

At times, progress ground to a halt, hampered by a U.S. trade embargo that limited the availability of parts. Even after the 1990 peace settlements, guerrilla groups continued to threaten the area. Still, Leaf and her team completed the 185-kW hydroelectric plant in 1994, and today the turbines in Bocay and El Cuá continue to generate electricity.

And 21 years later, Leaf is still here. These days, she is the director of ATDER-BL, which she founded after Linder''s death, and she lives in El Cuá, working from the group''s operations office here. Sunlight bathes the blue one-story building, which is set behind a chain-link fence just off the town''s only paved road. Flocks of birds in nearby trees twitter and shriek, and a metallic screech rings out from the adjacent machine shop, one of the first buildings to get electricity. Visitors wander in, clutching electric bills.

Leaf emerges from her office with an armful of maps and spreadsheets that document the association''s work. She speaks quietly despite the din. The Bocay project "left us with partially trained machinists, welders, masons, surveying crew, pipeline installation experts, and electricians," she recalls. The workers could have returned to their day jobs—farming, cutting hair, maintaining the town''s fleet of Soviet jeeps and American school buses. Leaf, too, could have found work elsewhere.

But people from nearby communities "came looking for us, saying that they had a river and they wanted to have a hydro plant, too," she explains. And so she began canvassing international donors for funding. The money was there—but for drinking water systems, not hydroelectric plants. And so for several years, the team switched to constructing potable water systems, the basic piping of which wasn''t too different from that of the hydropower plants they''d been building. "That was our bread-and-butter income," Leaf says.

As word of ATDER-BL''s work spread, the group returned to building hydropower plants, ranging in size from pico-plants that generate just enough juice to charge a car battery and light a school, to microplants of 3 to 8 kW that local farmers can operate themselves, to one plant that''s nearly a megawatt and now powers about 4,000 homes. In total the group, which now has a full-time staff of 40, has installed about 30 small hydroelectric plants throughout the region. It has consulted for Nicaragua''s Ministry of Mines and Energy and the United Nations Development Programme on dozens more.

"ATDER-BL''s work has improved the quality of life for thousands of Nicaraguans, from schoolchildren to farmers, with the support and help of local communities," says Laurie Guevara-Stone of the Rocky Mountain Institute, in Snowmass, Colo., who has worked on renewable energy in Nicaragua and other Central American countries. "Their approach could really serve as a model for rural electrification in other parts of the world."

Despite its international reputation, ATDER-BL has never lost its local focus. Just as the group had done in El Cuá and Bocay, it still leans heavily on local workers for the construction of each new hydroelectric plant, explains electrical engineer Abner Talen. The association asks each household to provide a volunteer to do the less technical work: branch clearing, pole hoisting, cable laying, concrete pouring. ATDER-BL''s crew does the rest.

"The people have to be willing to work," Talen says. "They have to take on the project as their own." Countless other well-meaning development efforts don''t follow that approach—and they fail, he adds. "There are lots of experiences where the population was given everything and then they don''t take care of it like they should."

One of the smallest of ATDER-BL''s hydropower plants is a 2-kW system owned and operated by a coffee grower named Martín Rivera and his neighbors. His house is nestled on a lush slope surrounded by bushes heavy with red, ripening coffee berries. Several years ago ATDER-BL advised him and his neighbors when they installed their plant. Now the generator hums in a closet-size shed downhill from Rivera''s farm. Upstream, a tiny dam hidden in the thick forest captures the water to drive the small Pelton wheel turbine.

Twenty years ago, Rivera would have never worked with a group like ATDER-BL. He fought on the side of the contras, and during the worst of the fighting, he sent his son Álvaro to the lowlands to study. When the war ended, Rivera returned to farming. And his son, who''d gotten an agricultural engineering degree, came home and began working for ATDER-BL.

Microhydroelectric systems like Rivera''s run at full capacity only when there''s enough rain. At drier times, they generate less power or none at all. But the bigger, newer sites need to operate continuously and sell their excess power to the grid to recoup their up-front cost, says Leaf. The cost of raw materials like copper has soared, and the increasing automation of the plants'' control systems, which rely on more expensive components and software, has also driven up costs.

Ensuring a steady supply of water for its hydropower plants has been a challenge for ATDER-BL, and it has pushed its engineers into an unexpected new sideline: watershed conservation. In this regard, the association''s biggest project to date, located at the foot of a steep rocky stream near the tiny town of El Bote, presented a thorny challenge.

But even as construction of the power plant got under way in 2002, the surrounding area was rapidly changing—for the worse. On Leaf''s first visit to the Bosawás Biosphere Reserve, northeast of El Bote, she recalls, "It looked like a place for a Tarzan movie, with vines dangling down from the trees along the side of the river and flocks of red parrots flying overhead, the monkeys calling from the trees nearby, throwing things at you." But at the forest''s edges, she says, "we saw the virgin forest smoldering. It was the slash and burn of poor people needing to establish agriculture."

Such wholesale land clearing is bad for hydroelectricity. Fields of corn and beans, which the poorest farmers plant because they offer a quick return on investment, are prone to soil erosion. During the rainy season, the sediment washes from deforested farmland, clogs streams, disrupts dams, and hobbles the hydropower generators. And without the shade of trees overhead, streambeds dry up.

Someone had to ensure the region has enough water to feed its hydropower plants, and that person turned out to be Boanerge Rocha Moreno. The agricultural engineer stands at the intersection of two dirt roads, where one-room wooden houses sport rooftop satellite dishes. He wears a Boston Red Sox cap, a spotless white polo shirt, jeans, and rubber boots.

About Electric grid nicaragua

About Electric grid nicaragua

As the photovoltaic (PV) industry continues to evolve, advancements in Electric grid nicaragua have become critical to optimizing the utilization of renewable energy sources. From innovative battery technologies to intelligent energy management systems, these solutions are transforming the way we store and distribute solar-generated electricity.

When you're looking for the latest and most efficient Electric grid nicaragua for your PV project, our website offers a comprehensive selection of cutting-edge products designed to meet your specific requirements. Whether you're a renewable energy developer, utility company, or commercial enterprise looking to reduce your carbon footprint, we have the solutions to help you harness the full potential of solar energy.

By interacting with our online customer service, you'll gain a deep understanding of the various Electric grid nicaragua featured in our extensive catalog, such as high-efficiency storage batteries and intelligent energy management systems, and how they work together to provide a stable and reliable power supply for your PV projects.

Related Contents

Contact Integrated Localized Bess Provider

Enter your inquiry details, We will reply you in 24 hours.